Time Limit: 18000/9000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others) Total Submission(s): 3814 Accepted Submission(s): 1678
Problem Description John is a manager of a CPU chip factory, the factory produces lots of chips everyday. To manage large amounts of products, every processor has a serial number. More specifically, the factory produces n chips today, the i-th chip produced this day has a serial number si.
At the end of the day, he packages all the chips produced this day, and send it to wholesalers. More specially, he writes a checksum number on the package, this checksum is defined as below: maxi,j,k(si+sj)⊕sk
which i,j,k are three different integers between 1 and n. And ⊕ is symbol of bitwise XOR.
Can you help John calculate the checksum number of today?
Input The first line of input contains an integer T indicating the total number of test cases.
The first line of each test case is an integer n, indicating the number of chips produced today. The next line has n integers s1,s2,..,sn, separated with single space, indicating serial number of each chip.
1≤T≤1000 3≤n≤1000 0≤si≤109 There are at most 10 testcases with n>100
Output For each test case, please output an integer indicating the checksum number in a line.
voidinit() { sz = 0; L[sz++].init(); } inlineintnewnode() { L[sz].init(); return sz++; } voidins(int val) { bitset<31>s(val); int u = 0; for (int i = 30; i >= 0; --i) { int v = s[i]; if (!L[u].nxt[v]) L[u].nxt[v] = newnode(); u = L[u].nxt[v]; ++L[u].cnt; } L[u].v = val; } voidupdate(int val, int c) { bitset<31>s(val); int u = 0; for (int i = 30; i >= 0; --i) { int v = s[i]; u = L[u].nxt[v]; L[u].cnt += c; } } intquery(int val) { bitset<31>s(val); int u = 0; for (int i = 30; i >= 0; --i) { int v = s[i]; if (L[L[u].nxt[v ^ 1]].cnt) u = L[u].nxt[v ^ 1]; else u = L[u].nxt[v]; } return L[u].v; } intmain(void) { int TC, n, i, j; scanf("%d", &TC); while (TC--) { init(); scanf("%d", &n); for (i = 1; i <= n; ++i) { scanf("%d", &arr[i]); ins(arr[i]); } int ans = 0; for (i = 1; i <= n; ++i) { for (j = i + 1; j <= n; ++j) { update(arr[i], -1); update(arr[j], -1); int t = arr[i] + arr[j]; ans = max(ans, query(t)^t); update(arr[i], 1); update(arr[j], 1); } } printf("%d\n", ans); } return0; }